Центробежная сила кн. В чем разница между центробежной и центростремительной силой

Взыскание

Ранее рассматривались характеристики прямолинейного движения: перемещение, скорость, ускорение . Их аналогами при вращательном движении являются: угловое перемещение, угловая скорость, угловое ускорение .

  • Роль перемещения во вращательном движении играет угол ;
  • Величина угла поворота за единицу времени - это угловая скорость ;
  • Изменение угловой скорости за единицу времени - это угловое ускорение .

Во время равномерного вращательного движения тело совершает движение по окружности с одинаковой скоростью, но с изменяющимся направлением. Например, такое движение совершают стрелки часов по циферблату.

Допустим, шар равномерно вращается на нити длиной 1 метр. При этом он будет описывать окружность с радиусом 1 метр. Длина такой окружности: C = 2πR = 6,28 м

Время, за которое шар полностью делает один полный оборот по окружности, называется периодом вращения - T .

Чтобы вычислить линейную скорость шара, необходимо разделить перемещение на время, т.е. длину окружности на период вращения:

V = C/T = 2πR/T

Период вращения:

T = 2πR/V

Если наш шар будет делать один оборот за 1 секунду (период вращения = 1с), то его линейная скорость:
V = 6,28/1 = 6,28 м/с

2. Центробежное ускорение

В любой точке вращательного движения шара вектор его линейной скорости направлен перпендикулярно радиусу. Нетрудно догадаться, что при таком вращении по окружности, вектор линейной скорости шара постоянно меняет свое направление. Ускорение, характеризующее такое изменение скорости, называется центробежным (центростремительным) ускорением .

Во время равномерного вращательного движения меняется только направление вектора скорости, но не величина! Поэтому линейное ускорение = 0 . Изменение линейной скорости поддерживается центробежным ускорением, которое направлено к центру окружности вращения перпендикулярно вектору скорости - a ц .

Центробежное ускорение можно вычислить по формуле: a ц = V 2 /R

Чем больше линейная скорость тела и меньше радиус вращения, тем центробежное ускорение больше.

3. Центробежная сила

Из прямолинейного движения мы знаем, что сила равна произведению массы тела на его ускорение.

При равномерном вращательном движении на вращающееся тело действует центробежная сила:

F ц = ma ц = mV 2 /R

Если наш шарик весит 1 кг , то для удержания его на окружности понадобится центробежная сила:

F ц = 1·6,28 2 /1 = 39,4 Н

С центробежной силой мы сталкиваемся в повседневной жизни при любом повороте.

Сила трения должна уравновесить центробежную силу:

F ц = mV 2 /R; F тр = μmg

F ц = F тр; mV 2 /R = μmg

V = √μmgR/m = √μgR = √0,9·9,8·30 = 16,3 м/с = 58,5 км/ч

Ответ : 58,5 км/ч

Обратите внимание, что скорость в повороте не зависит от массы тела!

Наверняка вы обращали внимание, что некоторые повороты на шоссе имеют некоторый наклон внутрь поворота. Такие повороты "легче" проходить, вернее, можно проходить с бОльшей скоростью. Рассмотрим какие силы действуют на автомобиль в таком повороте с наклоном. При этом силу трения учитывать не будем, а центробежное ускорение будет компенсироваться только горизонтальной составляющей силы тяжести:


F ц = mV 2 /R или F ц = F н sinα

В вертикальном направлении на тело действует сила тяжести F g = mg , которая уравновешивается вертикальной составляющей нормальной силы F н cosα :

F н cosα = mg , отсюда: F н = mg/cosα

Подставляем значение нормальной силы в исходную формулу:

F ц = F н sinα = (mg/cosα)sinα = mg·sinα/cosα = mg·tgα

Т.о., угол наклона дорожного полотна:

α = arctg(F ц /mg) = arctg(mV 2 /mgR) = arctg(V 2 /gR)

Опять обратите внимание, что в расчетах не участвует масса тела!

Задача №2: на некотором участке шоссе имеется поворот с радиусом 100 метров. Средняя скорость прохождения этого участка дороги автомобилями 108 км/ч (30 м/с). Каким должен быть безопасный угол наклона полотна дороги на этом участке, чтобы автомобиль "не вылетел" (трением пренебречь)?

α = arctg(V 2 /gR) = arctg(30 2 /9,8·100) = 0,91 = 42° Ответ : 42° . Довольно приличный угол. Но, не забывайте, что в наших расчетах мы не принимаем во внимание силу трения дорожного полотна.

4. Градусы и радианы

Многие путаются в понимании угловых величин.

При вращательном движении основной единицей измерения углового перемещения является радиан .

  • 2π радиан = 360° - полная окружность
  • π радиан = 180° - половина окружности
  • π/2 радиан = 90° - четверть окружности

Чтобы перевести градусы в радианы, необходимо значение угла разделить на 360° и умножить на 2π . Например:

  • 45° = (45°/360°)·2π = π/4 радиан
  • 30° = (30°/360°)·2π = π/6 радиан

Ниже в таблице представлены основные формулы прямолинейного и вращательного движения.

Вот мальчик вращает камень на веревке. Он крутит этот камень все быстрее, пока веревка не оборвется. Тогда камень полетит куда-то в сторону. Какая же сила разорвала веревку? Ведь она удерживала камень, вес которого, конечно, не менялся. На веревку действует центробежная сила , отвечали ученые еще до . Еще задолго до Ньютона ученые выяснили, для того, чтобы тело вращалось, на него должна действовать сила. Но особенно хорошо это видно из законов Ньютона. Ньютон был первым ученым, . Он установил причину вращательного движения планет вокруг Солнца. Силой, вызывающей это движение, оказалась сила тяготения.

Центростремительная сила

Раз камень движется по окружности, значит, на него действует сила, изменяющая его движение. Ведь по инерции камень должен двигаться прямолинейно . Эту важную часть первого закона движения иногда забывают. Движение по инерции всегда прямолинейно. И камень, оборвавший веревку, также полетит по прямой линии. Сила, исправляющая путь камня, действует на него все время, пока он вращается. Эта постоянная сила называется центростремительной слой . Приложена она к камню. Но тогда, по , должна появиться сила, действующая со стороны камня на веревку и равная центростремительной. Эта сила и называется центробежной. Чем быстрее вращается камень, тем большая сила должна действовать на него со стороны веревки. Ну и, конечно, тем сильнее камень будет тянуть - рвать веревку. Наконец ее запаса прочности может не хватить, веревка разорвется, а камень полетит по инерции теперь уже прямолинейно. Так как он сохраняет свою скорость, то может улететь очень далеко.

Древнее оружие человека - праща

Пожалуй, самое древнее оружие человека - праща . Камнем из этой пращи, по библейскому преданию, пастух Давид убил великана Голиафа. А действует праща точно так же, как и веревка с камнем. Только в ней предварительно раскрученный камень просто отпускается в нужное время.
На стадионах вы часто видите спортсменов - метателей диска или молота. И здесь знакомая картина. Спортсмен кружится все быстрее и быстрее, держа в руках диск, и наконец выпускает его из рук. Диск при этом летит на шестьдесят - семьдесят метров. Ясно, что при очень больших скоростях во вращающихся телах развиваются и очень большие силы. Эти силы увеличиваются по мере удаления от оси вращения.

Центрирование ротора

Если вращающееся тело хорошо центрировано - ось вращения точно совпадает с осью симметрии тела, - это еще не так страшно. Возникающие силы будут уравновешены. Но в результате плохой центровки могут быть самые неприятные последствия. В этом случае на вал вращающейся машины все время будет действовать неуравновешенная сила, способная при больших скоростях даже сломать этот вал.
Скорость вращения роторов паровых турбин достигает тридцати тысяч оборотов в минуту. Во время пробных испытаний на заводе работающую турбину выслушивают примерно так же, как врач выслушивает сердце больного человека. Если ротор плохо центрирован, это сразу станет заметно - к ровному пению быстро вращающегося ротора присоединятся тревожные стуки и шумы, предвещающие неминуемую аварию. Турбину останавливают, ротор исследуют и добиваются того, чтобы вращение его стало совершенно плавным.

Уравновешивание центробежных сил

Уравновешивание центробежных сил составляет предмет постоянных забот инженеров и конструкторов. Эти силы - самые опасные враги машин, они обычно действуют разрушительно. Замечательный советский ученый-кораблестроитель - академик Алексей Николаевич Крылов, читая лекции студентам, приводил пример такого разрушительного действия. В 1890 году один пароход, имевший на борту свыше тысячи пассажиров, направлялся из Англии в Америку. На этом пароходе были установлены две машины по девяти тысяч лошадиных сил каждая. Инженеры, строившие эти машины, по-видимому, были недостаточно опытны или недостаточно сведущи и пренебрегли третьим законом Ньютона. В открытом море, когда двигатель работал на полную мощность, одна машина буквально разлетелась на куски, разорванная возникающими при вращении силами. Осколки повредили другую машину и пробили днище. Машинное отделение залило водой. Океанский пароход превратился в поплавок, беспомощно покачивавшийся на волнах. Его взял на буксир другой пароход, который доставил жертву центробежных сил в ближайший порт.

Рассмотрим два случая проявления центробежной силы инерции.

Пример 1. Рассмотрим вращающийся диск с закрепленными на нем стойками с шариками, подвешенными на нитях (рис.2). При вращении диска с постоянной угловой скоростью w шарики отклоняются на некоторый угол, тем больший, чем дальше он находится от оси вращения. Относительно инерциальной системы отсчета (неподвижной) все шарики движутся по окружности соответствующего радиуса R , при этом на шарики действует результирующая сила (рис.3).

Рис.2

Рис.3

Согласно второму закону Ньютона

учитывая, что F /P =tgα, можно записать

т.е. угол отклонения шарика зависит от угловой скорости и от его удаления от оси вращения диска.

Относительно неинерциальной системы отсчета, связанной с вращающимся диском, шарик находится в покое.

Это возможно в том случае, если сила (8) уравновешена силой инерции , называемой центробежной силой инерции :

Пример 2. Рассмотрим диск, вращающийся вокруг перпендикулярной к нему вертикальной оси z с угловой скоростью ω. Вместе с диском вращается надетый на тонкую спицу шарик, соединенный с центром диска пружиной (рис. 4).

Рис.4

Шарик занимает на стержне некоторое положение, при котором сила натяжения пружины (она будет центростремительной) оказывается равной произведению массы шарика m на его ускорение:

где – нормальное ускорение на шарике; r – расстояние от оси вращения до центра шарика.

Относительно системы отсчета, связанной с диском, шарик покоится. Это формально можно объяснить тем, что кроме силы упругости на шарик действует сила инерции, модуль которой равен силе упругости (7):

Сила инерции направлена вдоль радиуса от центра диска. Силу инерции (8), возникающую в равномерно вращающейся системе отсчета, называют центробежной силой инерции . Эта сила действует на тело во вращающейся системе отсчета, независимо от того, покоится тело в этой системе или движется относительно нее со скоростью . Если положение тела во вращающейся системе отсчета характеризовать радиус-вектором , то центробежную силу можно представить в виде

где – компонента радиус-вектора, направленная перпендикулярно оси вращения.

Центробежные силы , как и всякие силы инерции, существуют только в ускоренно движущихся (вращающихся) системах отсчета и исчезают при переходе к инерциальным системам отсчета.

Действию центробежной силы подвергается, например, пассажир в движущемся автобусе на поворотах. Если в центробежной машине подвесить на нитях несколько шариков и привести машину в быстрое вращение, то центробежные силы инерции отклонят шарики от оси вращения. Угол отклонения тем больше, чем дальше шарик отстоит от оси. Центробежные силы используются в центробежных сушилках для отжима белья, в сепараторах для отделения сливок от молока, в центробежных насосах, центробежных регуляторах и т.д. Их надо учитывать при проектировании быстровращающихся деталей механизмов.

Центробежная сила - сила инерции, возникающая при вращении тела и направленная от центра оси вращения. Центробежная сила является силой инерции.

Система отсчета, вращающаяся относительно инерциальной системы отсчета с угловой скоростью

r является неинерциальной системой отсчета.

Рассмотрим пример такой неинерциальной системы отсчета. На рисунке изображен вращающийся с угловой скоростью r диск, на котором находится тело массой m. Тело относительно диска покоится.

Относительно инерциальной системы отсчета (относительно точки О, относительно Земли)

тело движется по окружности и его ускорение равно ar n = ar u , которое направлено к центру окружности.

Теперь рассмотрим движение тел по отношению к системам отсчета, вращающимся относительно инерциальных систем. Выясним, какие силы инерции действуют в этом случае. Ясно, что это будет более сложно, так как разные точки таких систем имеют разные ускорения относительно инерциальных систем отсчета.

Начнём со случая, когда тело покоится относительно вращающейся системы отсчета. В этом случае сила инерции должна уравновешивать все силы, действующие на тело со стороны других тел. Пусть система вращается с угловой скоростью w, а тело расположено на расстоянии r от оси вращения и находится в равновесии в этой точке. Для того чтобы найти результирующую сил, действующих на тело со стороны других тел, можно, как и в § 128, рассмотреть движение тела относительно инерциальной системы. Это движение есть вращение с угловой скоростью w по окружности радиуса r. Согласно § 119 результирующая сила направлена к оси по радиусу и равна mw2r, где m - масса тела. Эта сила может быть вызвана натяжением нити (вращение грузика на нити), силой тяготения (движение планет вокруг Солнца), упругостью других тел (упругость рельсов при движении вагона по закруглению) и т. п.

Результирующая сила не зависит от того, в какой системе отсчета рассматривается данное движение. Но относительно нашей неинерциальной системы тело покоится. Значит, сила инерции уравновешивает эту результирующую, т. е. равна массе тела, умноженной на ускорение той точки системы, где находится тело, и направлена противоположно этому ускорению. Таким образом, сила инерции также равна mw2r, но направлена по радиусу от оси вращения. Эту силу называют центробежной силой инерции. Силы, действующие со стороны других тел на тело, покоящееся относительно вращающейся системы отсчета, уравновешиваются центробежной силой инерции.

В отличие от сил инерции в поступательно движущихся системах, центробежная сила инерции для тела данной массы зависит от точки, в которой расположено тело, и по модулю и по направлению: центробежная сила инерции направлена по радиусу, проходящему через тело, и для заданной угловой скорости пропорциональна расстоянию от тела до оси вращения.

Вследствие вращения Земли на ней также должна наблюдаться центробежная сила инерции (которой мы до сих пор пренебрегали). мы нашли, что центростремительное ускорение на экваторе равно 0,034 м/с?. Это составляет примерно 1/300 часть ускорения свободного падения g. Значит, на тело массы m, находящееся на экваторе, действует центробежная сила инерции, равная mg/300 и направленная от центра, т. е. по вертикали вверх. Эта сила уменьшает вес тела по сравнению с силой притяжения Земли на 1/300 часть. Так как на полюсе центробежная сила инерции равна нулю, то при перенесении тела с полюса на экватор оно «потеряет» вследствие вращения Земли 1/300 часть своего веса. На других широтах центробежная сила инерции будет меньше, изменяясь пропорционально радиусу параллели, на которой расположено тело. Из рисунка видно, что всюду, кроме экватора и полюсов, центробежная сила инерции направлена под углом к направлению на центр Земли, отклоняясь от него в сторону экватора. В результате сила тяжести mg, представляющая собой результирующую силы притяжения к Землей центробежной силы инерции, оказывается отклоненной от направления на центр Земли в сторону экватора.

В действительности, как показал опыт, потеря веса тела при перенесении его с полюса на экватор составляет не 1/300 часть его веса, а больше: около 1/190 части. Это объясняется тем, что Земля не шар, а слегка сплюснутое тело, и поэтому сила тяжести на полюсе оказывается несколько больше, чем на экваторе. Влияние силы инерции и различия в силе притяжения к Земле на разных широтах, приводит к зависимости ускорения свободного падения от широты местности и к различию в ускорении свободного падения в разных точках земного шара.

Мы видим, что существует эквивалентность центробежной силы инерции и сил тяготения. Если бы Земля не вращалась, та же потеря в весе вызывалась бы немного большей сплюснутостью Земли, а если бы Земля не была сплюснута, та же потеря в весе вызывалась бы несколько большей скоростью вращения Земли. Отклонение отвеса также вызывалось бы не вращением Земли, а неравномерным распределением масс внутри Земли.