Классическая архитектура ПК. Основные особенности архитектуры современных ПК

Прописка

Архитектура персонального компьютера

Введение

Компьютер (англ. computer - вычислитель) представляет собой программируемое электронное устройство, способное обрабатывать данные и производить вычисления, а также выполнять другие задачи манипулирования символами.

Существует два основных класса компьютеров:

  • цифровые компьютеры, обрабатывающие данные в виде числовых двоичных кодов;
  • аналоговые компьютеры, обрабатывающие непрерывно меняющиеся физические величины (электрическое напряжение, время и т. д.), которые являются аналогами вычисляемых величин.

Поскольку в настоящее время подавляющее большинство компьютеров являются цифровыми, далее будем рассматривать только этот класс компьютеров и слово "компьютер" употреблять в значении "цифровой компьютер". Основу компьютеров образует аппаратура (HardWare), построенная, в основном, с использованием электронных и электромеханических элементов и устройств. Принцип действия компьютеров состоит в выполнении программ (SoftWare) - заранее заданных, четко определённых последовательностей арифметических, логических и других операций.

Любая компьютерная программа представляет собой последовательность отдельных команд. Команда - это описание операции, которую должен выполнить компьютер. Как правило, у команды есть свой код (условное обозначение), исходные данные (операнды) и результат. Например, у команды "сложить два числа" операндами являются слагаемые, а результатом - их сумма. А у команды "стоп" операндов нет, а результатом является прекращение работы программы. Результат команды вырабатывается по точно определенным для данной команды правилам, заложенным в конструкцию компьютера. Совокупность команд, выполняемых данным компьютером, называется системой команд этого компьютера.

Компьютеры работают с очень высокой скоростью, составляющей миллионы – сотни миллионов операций в секунду.

Персональные компьютеры, более чем какой-либо другой вид ЭВМ, способствуют переходу к новым компьютерным информационным технологиям, которым свойственны:

  • дружественный информационный, программный и технический интерфейс с пользователем;
  • выполнение информационных процессов в режиме диалога с пользователем;
  • сквозная информационная поддержка всех процессов на основе интегрированных баз данных;
  • так называемая “безбумажная технология”.

Компьютер - это многофункциональное электронное устройство для накопления, обработки и передачи информации. Под архитектурой компьютера понимается его логическая организация, структура и ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

В основу построения большинства ЭВМ положены принципы, сформулированные в 1945 г. Джоном фон Нейманом:

  1. Принцип программного управления (программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определённой последовательности).
  2. Принцип однородности памяти (программы и данные хранятся в одной и той же памяти; над командами можно выполнять такие же действия, как и над данными).
  3. Принцип адресности (основная память структурно состоит из нумерованных ячеек).

ЭВМ, построенные на этих принципах, имеют классическую архитектуру (архитектуру фон Неймана). Архитектура ПК определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера:

  • центрального процессора;
  • основной памяти;
  • внешней памяти;
  • периферийных устройств.

Основные электронные компоненты, определяющие архитектуру процессора, размещаются на основной плате компьютера, которая называется системной или материнской (MotherBoard). А контроллеры и адаптеры дополнительных устройств либо сами эти устройства, выполняются в виде плат расширения (DaughterBoard - дочерняя плата) и подключаются к шине с помощью разъёмов расширения, называемых также слотами расширения (англ. slot - щель, паз)

Функционально-структурная организация

Основные блоки ПК и их значение

Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные. Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств.

Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов. Персональный компьютер - это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения. Достоинствами ПК являются:

  • малая стоимость, находящаяся в пределах доступности для индивидуального покупателя;
  • автономность эксплуатации без специальных требований к условиям окружающей среды;
  • гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;
  • "дружественность" операционной системы и прочего программного обеспечения, обусловливающая возможность работы с ней пользователя без специальной профессиональной подготовки;
  • высокая надежность работы (более 5 тыс. ч наработки на отказ).

Структура персонального компьютера

Рассмотрим состав и назначение основных блоков ПК.

Микропроцессор (МП) - это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.

В состав микропроцессора входят:

  • устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;
  • арифметико-логическое устройство (АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор);
  • микропроцессорная память (МПП) - служит для кратковременного характера, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессор. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);
  • интерфейсная система микропроцессора - реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O - Input/Output port) - аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.

Генератор тактовых импульсов

Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины.

Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов.

Системная шина

Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Системная шина включает в себя:

  • кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда;
  • кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода – вывода внешнего устройства;
  • кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины;
  • шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания.

Системная шина обеспечивает три направления передачи информации:

  • между микропроцессором и основной памятью;
  • между микропроцессором и портами ввода-вывода внешних устройств;
  • между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Не блоки, а точнее их порты ввода – вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: Непосредственно или через контроллеры (адаптеры). Управление системной шины осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему- контроллер шины, формирующий основные сигналы управления.

По определению, архитектура - это описание слож­ной системы, состоящей из множества элементов, как еди­ного целого.

Архитектура современного персонального компьютера является обобщением принципов построения ЭВМ, предло­женным группой ученых во главе с Джоном фон Нейманом. В классической архитектуре неймановской ЭВМ мож­но выделить 5 основных блоков, показанных на рис. 2.1. С помощью устройств ввода (УВв) данные и програм­мы, представленные в двоичной форме, попадают в опера­тивно-запоминающее устройство (ОЗУ), или память, ма­шины. Для реализации команд, образующих программу, используется арифметико-логическое устройство (АЛУ), выполняющее арифметические операции, операции срав­нения, алгебры логики и др. Взаимодействие ОЗУ и АЛУ осуществляет устройство управления (УУ). С его помощью программа из ОЗУ передается в АЛУ, оты­скиваются нужные данные, выполняются вычисления, происходит запись в память и организуется выдача результата посред­ством устройства вывода (УВыв).

Реальная структура современного компьютера значительно сложнее, что обусловлено стремлением к повышению его производительности и функциональных возможностей

Так, в структуре персональной ЭВМ появилась кэш­память, введены каналы прямого доступа к оперативной памяти, используемые для обмена данными с устройства­ми ввода/вывода, минуя микропроцессор.

Периферийные устройства подключаются к аппарату­ре компьютера через специальные контроллеры (К) или адаптеры (А) - устройства управления, освобождая про­цессор от непосредственного управления данным оборудо­ванием.

В архитектуре персонального компьютера появился сопроцессор - устройство, функционирующее параллель­но с главным процессором и выполняющее специфические операции: например, математический сопроцессор пред­назначен для сложных математических вычислений.

Системный блок является центральной частью ПК. В корпусе системного блока размещены внутренние уст­ройства ПК. В состав системного блока входят следующие Устройства:

Системная (материнская) плата с микропроцессором;

Оперативная память;

Накопитель на жестком магнитном диске;

Контроллеры или адаптеры для подключения и управления внешними устройствами ПК (монитором, звуко­выми колонками и др.);

Порты для подключения внешних устройств (принтер,

мышьи др.);

Внешние запоминающие устройства (ВЗУ) для гибких магнитных дисков и лазерных дисков типа CD-ROM и DVD-ROM.

Системная плата является интегрирующим (объеди­няющим) узлом ПК. Системная плата во многом опреде­ляет конфигурацию ПК, поскольку от ее параметров за­висит тип используемого микропроцессора, максималь­ный объем оперативной памяти, количество и способы подключения внешних устройств ПК и другие характе­ристики.

Микропроцессор (или процессор) - это главная мик­росхема компьютера. Он запускает программный код, на­ходящийся в памяти, и управляет всеми устройствами ком­пьютера либо напрямую, либо через соответствующие кон­троллеры.

Основой любого микропроцессора является ядро, ко­торое состоит из миллионов транзисторов, расположен­ных на кристалле кремния. Микропроцессор имеет спе­циальные ячейки, которые называются регистрами об­щего назначения (РОН). Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. Для повышения бы­стродействия ПК микропроцессор снабжен внутренней кэш-памятью.

Процессоры Intel, используемые в IBM-совместимых ПК, насчитывают более тысячи команд и относятся к про­цессорам с расширенной системой команд - CISC-процес­сорам (CISC - Complex Instruction Set Computing).

Обмен данными и командами между внутренними уст­ройствами ПК происходит по проводникам многожильно­го кабеля - системной шине. Основной задачей систем­ной шины является передача данных между процессором и остальными электронными узлами компьютера. Разли­чают три вида шин:

Шина данных;

Шина адреса;

Шина команд.

Шина данных. По этой шине происходит передача данных из оперативной памяти в РОН процессора и на­оборот. В ПК на базе процессоров Intel Pentium шина дан­ных 64-разрядная, т. е. за один такт на обработку посту­пает сразу 8 байт данных.

Шина адреса. По этой шине передаются адреса ячеек оперативной памяти, где находятся команды, которые не­обходимо выполнить процессору. Кроме этого, по этой шине передаются данные, с которыми оперируют коман­ды. В современных процессорах адресная шина 32-разряд­ная, то есть она состоит из 32 параллельных проводников.

Шина команд. По этой шине из оперативной памяти поступают команды, выполняемые процессором. Коман­ды представлены в виде байтов. Простые команды занима­ют один байт, а более сложные - два, три и больше бай­тов. Большинство современных процессоров имеют 32-раз­рядную командную шину, хотя существуют 64-разрядные процессоры с 64-разрядной командной шиной.

Рассмотрим основные шинные интерфейсы системных плат, но более подробно остановимся на шине USB.

USB (Universal Serial Bus). Универсальная последова­тельная шина USB является обязательным элементом со­временного ПК, она пришла на смену устаревшим парал­лельным и последовательным портам. Шина USB пред­ставляет собой последовательный интерфейс передачи Данных для средне- и низкоскоростных периферийных Устройств. Она позволяет подключить до 256 разных уст­ройств с последовательным интерфейсом. Шина USB под­держивает автоопределение (Plug and play) новых уст­ройств, а также так называемое «горячее» подключение, то есть подключение к работающему компьютеру без его перезагрузки. Скорость передачи данных по USB состав­ляет 1,5 Мбит/с. Приведем без пояснения другие типы ^ин: ISA (Industry Standard Architecture), PCI (Periph­eral Component Interconnect), FSB (Front Side Bus), AGP (Advanced Graphic Port).

Все виды запоминающих устройств, расположенные на системной плате, образуют внутреннюю память ПК, к которой относятся:

Оперативная память;

Сверхоперативная память (кэш-память);

Постоянная память.

Оперативная память RAM (Random Access Memory) ис­пользуется для хранения исполняемых в данный момент про­грамм и необходимых для этого данных. Через оперативную память происходит обмен командами и данными между мик­ропроцессором, внешней памятью и периферийными устрой­ствами. Высокое быстродействие определяет название (опе­ративная) данного вида памяти. Ключевой особенностью опе­ративной памяти является ее энергозависимость, т.е. данные хранятся в ней только при включенном компьютере.

По физическому принципу действия различают дина­мическую память DRAM и статическую память SRAM.

Динамическая память при всей простоте и низкой стоимости обладает существенным недостатком, заклю­чающимся в необходимости периодической регенерации (обновлении) содержимого памяти.

Микросхемы динамической памяти используются как основное оперативное запоминающее устройство (ОЗУ), а микросхемы статической - для кэш-памяти.

Кэш-память (Cache memory) используется для повы­шения быстродействия ПК. Принцип «кэширования» за­ключается в использовании быстродействующей памяти для хранения наиболее часто используемых данных или команд, при этом сокращается количество обращений к более медленной оперативной памяти.

Постоянная память ROM (Read Only Memory) пред­назначена для хранения неизменяемой информации и раз­мещается в микросхеме постоянного запоминающего уст­ройства (ПЗУ). Микросхема ПЗУ способна продолжитель­ное время сохранять информацию даже при отключенном компьютере, поэтому постоянную память также называ­ют энергонезависимой памятью.

Комплект программ, находящийся в ПЗУ, составляет базовую систему ввода/вывода BIOS (Basic Input/Output с tem). bios содержит программы управления клавиатурой, видеокартой, дисками, портами и другими устройствами. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособность системы и обеспечить взаимодействие основных узлов ПК до загруз­ки какой-либо операционной системы. Кроме этого, в BIOS входит программа тестирования, которая выполняется при включении компьютера.

Архитектура персонального компьютера (ПК) включает в себя структуру, которая отражает состав ПК, и программное обеспечение.

Структура ПК – это набор его функциональных элементов (от основных логических узлов до простейших схем) и связей между ними.

Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов ПК, к которым относят процессор, оперативное запоминающее устройство, внешние запоминающие устройства и периферийные устройства.

Основным принципом построения всех современных ПК является программное управление.

Классическая архитектура фон Неймана

В $1946$ году американские математики Джон фон Нейман, Герман Голдштейн и Артур Бёркс в совместной статье изложили новые принципы построения и функционирования ЭВМ. На основе этих принципов производилось $1$-е и $2$-е поколение компьютеров. В следующих поколениях происходили некоторые изменения, но принципы фон Неймана (как они были названы) сохранялись.

Основные принципы фон Неймана:

  1. Использование двоичной системы счисления в ПК, в которой устройствам гораздо проще выполнять арифметико-логические операции, чем в десятичной.
  2. Программное управление ПК. Работа ПК управляется программой, которая состоит из набора команд, выполняющихся последовательно одна за другой. Создание машины с хранимой в памяти программой положило начало программированию.
  3. Данные и программы хранятся в памяти ПК. Команды и данные кодируются одинаково в двоичной системе.
  4. Ячейки памяти ПК имеют последовательно пронумерованные адреса. Возможность обращения к любой ячейке памяти по ее адресу позволила использовать переменные в программировании.
  5. Возможность условного перехода при выполнении программы. Команды в ПК выполняются последовательно, но при необходимости можно реализовать переход к любой части кода.

Основным принципом было то, что программа уже стала не постоянной частью машины, а изменяемой, в отличие от аппаратуры, которая остается неизменной и очень простой.

Фон Нейманом также была предложена структура ПК (рис. 1).

Рисунок 1. Структура ПК

В состав машины фон Неймана входили:

  • запоминающее устройство (ЗУ);
  • арифметико-логическое устройство (АЛУ), которое выполняло все арифметические и логические операции;
  • устройство управления (УУ), которое координирует действия всех узлов машины в соответствии с программой;
  • устройства ввода-вывода.

Программы и данные вводились в ЗУ из устройства ввода через АЛУ. Все команды программы записывались в ячейки памяти последовательно, а данные для обработки – в произвольные ячейки.

Команда состояла из указания операции, которую необходимо выполнить, и адресов ячеек памяти, в которых хранятся данные и над которыми необходимо выполнить нужную операцию, а также адреса ячейки, в которую необходимо записать результат (для хранения в ЗУ).

Из АЛУ результаты выводятся в ЗУ или устройство вывода. Принципиально эти устройства отличаются тем, что в ЗУ данные хранятся в удобном для обработки ПК виде, а на устройства вывода (монитор, принтер и т.п.) в удобном для человека.

От УУ на другие устройства поступают сигналы с командами, а от других устройств УУ получает информацию о результате их выполнения.

В УУ содержится специальный регистр (ячейка) – счетчик команд, в который записывается адрес первой команды программы. УУ считывает из памяти содержимое соответствующей ячейки памяти и помещает его в специальное устройство – регистр команд. УУ определяет операцию команды, «отмечает» в памяти данные, адреса которых указаны в команде, и контролирует выполнение команды. Операцию выполняет АЛУ или аппаратные средства компьютера.

После выполнения команды счетчик команд увеличивается на $1$ и указывает на следующую команду программы. При необходимости выполнения команды, которая не следует по порядку за текущей, специальная команда перехода содержит адрес ячейки, в которую нужно передать управление.

Архитектура современных ПК

В основу архитектуры современных ПК заложен магистрально-модульный принцип. ПК состоит из отдельных частей – модулей, которые являются относительно самостоятельными устройствами ПК (напрмер, процессор, оперативная память, контроллер, дисплей, принтер, сканер и т.д.).

Модульный принцип позволяет пользователю самостоятельно комплектовать необходимую конфигурацию ПК и производить при необходимости его обновление. Модульная организация системы опирается на магистральный принцип обмена информацией. Для работы ПК как единого механизма необходимо осуществлять обмен данными между различными устройствами, за что отвечает системная (магистральная) шина, которая выполняется в виде печатного мостика на материнской плате.

Основные особенности архитектуры ПК сводятся к принципам компоновки аппаратуры, а также к выбранному набору системных аппаратных средств.

Подобная архитектура характеризуется ее открытостью – возможностью включения в ПК дополнительных устройств (системных и периферийных), а также возможностью простого встраивания программ пользователя на любом уровне программного обеспечения ПК.

Замечание 1

Также совершенствование архитектуры ПК связано с максимальным ускорением обмена информацией с системной памятью. Именно из системной памяти, в которой хранятся данные, ПК считывает все исполняемые команды. Таким образом больше всего обращений центральный процессор совершает к памяти и ускорение обмена с памятью приведет к существенному ускорению работы всей системы в целом.

Т.к. при использовании системной магистрали для обмена процессора с памятью приходится учитывать скоростные ограничения самой магистрали, то существенного ускорения обмена данными с помощью магистрали добиться невозможно.

Для решения этого вопроса был предложен следующий подход. Системная память вместо системной магистрали подключается к специальной высокоскоростной шине, которая дистанционно находится ближе к процессору и не требует сложных буферов и больших расстояний. В этом случае обмен с памятью идет с максимально возможной для процессора скоростью, и системная магистраль не замедляет его. Особенно актуальным это решение стало с ростом быстродействия процессора.

Таким образом, структура ПК из одношинной, которая применялась только в первых компьютерах, становится трехшинной.

Рисунок 2. Трехшинная структура ПК

АЛУ и УУ в современных ПК образуют процессор. Процессор, который состоит из одной или нескольких больших интегральных схем, называется микропроцессором или микропроцессорным комплектом.

Многопроцессорная архитектура ПК

Наличие в ПК нескольких процессоров означает, что параллельно может быть организовано много потоков данных и команд, т.е. одновременно могут выполняться несколько фрагментов одной задачи.

Рисунок 3. Архитектура многопроцессорного ПК

Многомашинная вычислительная система

В архитектуре многомашинной вычислительной системы каждый процессор имеет свою оперативную память. Применение многомашинной вычислительной системы эффективно при решении задач, которые имеют очень специальную структуру, которая должна состоять из такого количества ПК, на сколько слабо связанных подзадач разбита система.

Многопроцессорные и многомашинные вычислительные системы имеют преимущество перед однопроцессорными в быстродействии.

Архитектура с параллельными процессорами

В данной архитектуре несколько АЛУ работают под управлением одного УУ. Это означает, что множество данных может обрабатываться по одной программе, т. е. по одному потоку команд. Высокое быстродействие такой архитектуры можно получить только на задачах, в которых одинаковые вычислительные операции выполняются одновременно на различных однотипных наборах данных.

Рисунок 4. Архитектура с параллельным процессором

В современных машинах часто присутствуют элементы различных типов архитектурных решений. Существуют и другие архитектурные решения, отличные от рассмотренных выше.

Author24.ru

Архитектура компьютерной системы: классификация и определение

Современные компьютерные решения могут быть классифицированы, исходя из их отнесения к той или иной архитектуре. Но что она может представлять собой? Каковы основные подходы к пониманию данного термина?

Архитектура компьютерных систем как совокупность аппаратных компонентов

В чем заключается сущность понятия «архитектура компьютерной системы»? Под соответствующим термином прежде всего можно понимать совокупность электронных компонентов, из которых состоит ПК, взаимодействующих в рамках определенного алгоритма с использованием различных типов интерфейсов.

Основные компоненты, которые входят в состав компьютерной системы:

  • устройство ввода;
  • главный вычислительный чипсет;
  • устройства для запоминания данных;
  • компоненты, предназначенные для вывода информации.

В свою очередь, каждый из отмеченных компонентов может включать в себя большое количество отдельных устройств. Например, главный вычислительный чипсет может включать в себя процессор, набор микросхем на материнской плате, модуль обработки графических данных. При этом тот же процессор может состоять из иных компонентов: например, ядра, кэш-памяти, регистров.

Исходя, собственно, из структуры конкретных аппаратных компонентов ПК, определяется то, какая архитектура компьютерной системы выстроена. Рассмотрим основные критерии, в соответствии с которыми те или иные вычислительные решения могут классифицироваться.

Классификация компьютерных систем

В соответствии с распространенным в среде экспертов подходом, компьютерные системы по своей архитектуре могут относиться:

  • к большим ЭВМ;
  • к мини-ЭВМ;
  • к персональным компьютерам.

Следует отметить, что данная классификация вычислительных решений, в соответствии с которой может определяться архитектура компьютерной системы, многими экспертами признается устаревшей. В частности, те же персональные компьютеры сегодня могут подразделяться на большое количество разновидностей, очень несхожих по назначению и характеристикам.

Таким образом, по мере того как развиваются компьютерные системы, архитектура компьютера может быть классифицирована с использованием меняющихся критериев. Тем не менее обозначенная схема считается традиционной. Полезно будет рассмотреть ее подробнее. В соответствии с ней, первый тип ЭВМ - те, что относятся к архитектуре больших машин.

Большие ЭВМ

Большие ЭВМ,или мейнфреймы, чаще всего используются в промышленности - как центры обработки данных по различным производственным процессам. В них могут быть инсталлированы мощные, исключительно высокопроизводительные чипы.

Рассматриваемая архитектура компьютерной системы может осуществлять до нескольких десятков миллиардов вычислений в секунду. Стоят большие ЭВМ несопоставимо дороже остальных систем. Как правило, их обслуживание требует участия довольно большого количества людей, имеющих необходимую квалификацию. Во многих случаях их работа осуществляется в рамках подразделений, организованных в качестве вычислительного центра предприятия.

Мини-ЭВМ

Архитектура вычислительных систем и компьютерных сетей на их основе может быть представлена решениями, классифицированными как мини-ЭВМ. В целом их назначение может быть аналогичным, что и в случае с мейнфреймами: весьма распространено применение соответствующего типа компьютеров в промышленности. Но, как правило, их использование свойственно для относительно небольших предприятий, средних бизнесов, научных организаций.

Современные мини-ЭВМ: возможности

Во многих случаях применение данных компьютеров осуществляется как раз в целях эффективного управления внутрикорпоративными сетями. Таким образом, рассматриваемые решения могут использоваться, в частности, как высокопроизводительные серверы. Они также оснащены очень мощными процессорами, такими как, например, Xeon Phi от Intel. Данный чип может работать со скоростью более 1 терафлопса. Соответствующий процессор рассчитан на производство по техпроцессу 22 нм и имеет пропускную способность памяти в значении 240 ГБ/с5.

Персональные компьютеры

Следующий тип компьютерной архитектуры - ПК. Вероятно, он является самым распространенным. ПК не столь мощны и высокопроизводительны как мейнфреймы и микро-ЭВМ, но во многих случаях способны решать задачи и в сфере промышленности, и в области науки, не говоря о типичных пользовательских задачах, таких как запуск приложений и игр.

Еще одна примечательная особенность, характеризующая персональные компьютеры, заключается в том, что их ресурсы могут быть объединены. Вычислительные мощности достаточно большого количества ПК, таким образом, могут быть сопоставимы с производительностью компьютерных архитектур вышестоящего класса, но, конечно, достигнуть их уровней номинально с помощью ПК весьма проблематично.

Тем не менее архитектура компьютерных систем, сетей на основе персональных компьютеров характеризуется универсальностью, с точки зрения реализации в различных отраслях, доступностью и масштабируемостью.

Персональные компьютеры: классификация

Как мы отметили выше, ПК могут быть классифицированы на большое количество разновидностей. В числе таковых: десктопы, ноутбуки, планшеты, КПК, смартфоны - объединяющие в себе ПК и телефоны.

Как правило, самыми мощными и производительными архитектурами обладают десктопы; наименее мощные - смартфоны и планшеты в связи с небольшими размерами и необходимостью существенно уменьшать ресурсы аппаратных компонентов. Но многие из соответствующих девайсов, особенно топовых моделей, по скорости работы, в принципе, сопоставимы с ведущими моделями ноутбуков и бюджетными десктопами.

Отмеченная классификация ПК свидетельствует об их универсальности: в тех или иных разновидностях они могут решать типичные пользовательские задачи, производственные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа во многих случаях адаптированы к использованию рядовым гражданином, не имеющим специальной подготовки, которая может потребоваться человеку, работающему с мейнфреймом или же мини-ЭВМ.

Как установить отнесение вычислительного решения к ПК?

Главный критерий отнесения вычислительного решения к ПК - факт его персональной ориентированности. То есть соответствующего типа компьютер рассчитан, главным образом, на задействование одним пользователем. Однако многие инфраструктурные ресурсы, к которым он обращается, носят неоспоримо социальный характер: это можно проследить на примере пользования интернетом. При том что вычислительное решение персональное, практическая эффективность в его задействовании может фиксироваться только лишь в случае получения человеком доступа к источникам данных, сформированным другими людьми.

Классификация ПО для компьютерных архитектур: мейнфреймы и мини-ЭВМ

Наряду с классификацией компьютеров, рассмотренной нами выше, существуют также критерии отнесения к тем или иным категориям программ, которые инсталлируются на соответствующие типы вычислительной техники. Что касается мейнфреймов и близких им по назначению, а в некоторых случаях и по производительности мини-ЭВМ, то на них, как правило, реализована возможность задействования нескольких операционных систем, адаптированных для решения конкретных производственных задач. В частности данные ОС могут быть приспособлены к запуску различных средств автоматизации, виртуализации, внедрения промышленных стандартов, интеграции с различными видами ПО прикладного назначения.

Классификация ПО: персональные компьютеры

Программы для обычных ПК могут быть представлены в разновидностях, оптимизированных для решения, в свою очередь, пользовательских задач, а также тех производственных, что не требуют того уровня производительности, который характеризует мейнфреймы и мини-ЭВМ. Есть, таким образом, программы для ПК промышленные, научные, лабораторные. ПО, архитектура компьютерных систем соответствующего типа зависит от конкретной отрасли, в которой они применяются, от предполагаемого уровня квалификации пользователя: очевидно, что профессиональные решения для промышленного дизайна могут быть не рассчитаны на человека, имеющего лишь базовые знания в области применения компьютерных программ.

Программы для ПК в тех или иных разновидностях имеют во многих случаях интуитивно понятный интерфейс, различную справочную документацию. В свою очередь, мощности мейнфреймов и мини-ЭВМ могут быть в полной мере использованы при условии не только следования инструкциям, но также и при регулярном внесении пользователем изменений в структуру запускаемых программ: для этого и могут понадобиться дополнительные знания, например, связанные с использованием языков программирования.

Уровни программной архитектуры ПК

Понятие «архитектура компьютерных систем» учебник информатики, в зависимости от взглядов его автора, может трактовать по-разному. Еще одна распространенная интерпретация соответствующего термина предполагает его соотнесение с уровнями программного обеспечения. При этом не имеет принципиального значения то, в какой конкретно вычислительной системе соответствующие уровни ПО реализованы.

В соответствии с данным подходом, под архитектурой компьютера следует понимать набор различных типов данных, операций, характеристик программного обеспечения, задействуемого в целях поддержания функционирования аппаратных компонентов компьютера, а также создания условий, при которых пользователь получает возможность применить данные ресурсы на практике.

Архитектуры программных уровней

Эксперты выделяют следующие основные архитектуры компьютерных систем в контексте рассматриваемого подхода к пониманию соответствующего термина:

  • цифровая логическая архитектура вычислительного решения - фактически, аппаратное обеспечение ПК в виде различных модулей, ячеек, регистров - например, находящихся в структуре процессора;
  • микроархитектура на уровне интерпретации различных микропрограмм;
  • архитектура трансляции специальных команд - на уровне ассемблера;
  • архитектура интерпретации соответствующих команд и их реализации в программный код, понятный операционной системе;
  • архитектура компиляции, позволяющая вносить изменения в программные коды тех или иных видов ПО;
  • архитектура языков высокого уровня, позволяющих приспособить программные коды к решению конкретных пользовательских задач.

Значение классификации программной архитектуры

Конечно, эта классификация в контексте рассмотрения данного термина как соответствующего уровням программного обеспечения, может быть очень условной. Архитектура компьютера и проектирование компьютерных систем, в зависимости от их технологичности и назначения, может потребовать иных подходов разработчиков в классификации уровней ПО, а также, собственно, к пониманию сущности термина, о котором идет речь.

Несмотря на то что данные представления теоретические, их адекватное понимание имеет большое значение, поскольку способствует разработке более эффективных концептуальных подходов к выстраиванию тех или иных типов вычислительной инфраструктуры, позволяет разработчикам оптимизировать свои решения к запросам пользователей, решающих конкретные задачи.

Резюме

Итак, мы определили сущность термина «архитектура компьютерной системы», то, каким образом он может рассматриваться в зависимости от того или иного контекста. В соответствии с одним из традиционных определений, под соответствующей архитектурой может пониматься аппаратная структура ПК, предопределяющая уровень его производительности, специализацию, требования к квалификации пользователей. Данный подход предполагает классификацию современных компьютерных архитектур на 3 основные категории - мейнфреймы, мини-ЭВМ, а также ПК (которые, в свою очередь, также могут быть представлены различными разновидностями вычислительных решений).

Как правило, каждый тип указанных архитектур рассчитан на решение определенных задач. Мейнфреймы и мини-ЭВМ чаще всего находят применение в промышленности. С помощью ПК также можно решать широкий круг производственных задач, осуществлять инженерные разработки - для этого также приспособлена соответствующая архитектура компьютерных систем. Лабораторные работы, научные эксперименты с такой техникой становятся понятнее и эффективнее.

Еще одна трактовка термина, о котором идет речь, предполагает его соотнесение с конкретными уровнями программного обеспечения. В этом смысле архитектура компьютерных систем - рабочая программа, обеспечивающая функционирование ПК, а также создающая условия для использования его вычислительных мощностей на практике в целях решения тех или иных пользовательских задач.

fb.ru

Что собой представляет архитектура ПК

Архитектура современного ПК представляет собой логическую организацию, структуру и ресурсы, то есть механизмы вычислительной системы. Последние могут выделяться на определенный временной интервал для процесса обработки информации.

Правила построения персонального компьютера

Основой современной вычислительной машины являются принципы архитектуры ПК, сформулированные Джоном Нейманом:

1. Программное управление. Состоит из группы команд, которые выполняет процессор автоматически (одну за другой в определенной последовательности).

2. Однородность памяти. Программы и другие данные хранятся в одном разделе памяти. Одни и те же действия выполняются и над данными, и над командами.

3. Адресность. Основная память состоит из пронумерованных секторов (ячеек).

Построение персонального компьютера

Классическая архитектура ПК строится на вышеперечисленных принципах. Она определяет условия работы, информационные связи, взаимное соединение главных логических узлов персонального компьютера. К ним относятся внешняя и основная память, центральный процессор и периферийные устройства.

Персональный компьютер конструктивно выполнен в виде основного системного блока. К нему через специализированные разъемы присоединяются периферийные устройства. Архитектура ПК содержит следующие основные узлы: системную плату, блок питания, накопители на жестком магнитном и оптическом дисках, интерфейсы для дополнительных и внешних устройств. В свою очередь, на материнской (системной) плате располагаются микропроцессор, тактовый генератор импульсов, математический сопроцессор и микросхемы памяти. А также таймер, контроллеры периферийных устройств, видео- и звуковая карта.

Архитектура ПК основана на модульно-магистральном принципе. Данное правило позволяет пользователю самостоятельно комплектовать требуемую конфигурацию персонального компьютера, а также (при необходимости) производить ее модернизацию. Удобство модульной организации системы заключается в магистральном принципе обмена данными. Контроллеры всех устройств взаимодействуют с оперативной памятью и микропроцессором через главную магистраль передачи информации, которую называют "системной шиной". Она выполнена в виде печатного моста на материнской плате. Системная шина – это главный интерфейс вычислительной машины, и вся архитектура ПК построена вокруг нее. Именно этот элемент обеспечивает связь и сопряжение всех устройств друг с другом. Системная шина производит три направления передачи данных:

Между основной памятью и микропроцессором;

Между портами ввода и вывода внешних устройств и процессором;

Между портами и основной памятью.

Внешние устройства персонального компьютера обеспечивают связь последнего с окружающей средой: объектами управления, пользователями и другими вычислительными машинами.

Основные функциональные характеристики ПК:

1. Быстродействие, производительность, тактовая частота.

2. Разрядность кодовых шин интерфейсов и микропроцессора.

3. Типы локальных и системных контроллеров.

4. Размер оперативной памяти.

5. Емкость жесткого диска.

6. Наличие, размер и виды кэш-памяти.

7. Тип видеоадаптера.

8. Вид мультимедийных аудиосредств.

9. Программное обеспечение.

10. Аппаратная совместимость с другими персональными компьютерами.

11. Возможность работы машины в вычислительной сети, а также в многозадачном режиме.

Архитектура персонального компьютера определяется в первую очередь его внутренним устройством: центральным процессором и подсистемами памяти, внутримашинным интерфейсом, а также подсистемами ввода-вывода информации (рис. 3.3).

Центральным блоком персонального компьютера является микропроцессор, управляющий всеми другими устройствами компьютера и выполняющий арифметические и логические операции с данными. В состав микропроцессора входят:

устройство управления (УУ), формирующее па основе опорных сигналов тактового генератора сигналы управле-

Рис. 3.3.

ния, а также адреса ячеек памяти, используемых выполняемой операцией, и передающее их в соответствующие блоки;

  • арифметико-логическое устройство (АЛУ), предназначенное для выполнения всех арифметических и логических операций над данными;
  • микропроцессорная память (МПП), служащая для кратковременного хранения, записи и выдачи данных, непосредственно используемых в вычислениях в ближайшие такты машины. Микропроцессорная память реализована в виде регистров – быстродействующих устройств, предназначенных для временного хранения данных ограниченного размера. Как правило, регистры имеют ту же разрядность, что и машинное слово (двоичное число, обрабатываемое за один такт);
  • интерфейсная система микропроцессора (ИСМ), реализующая сопряжение (связь) микропроцессора с другими устройствами компьютера. Включает внутренний интерфейс микропроцессора, буферные запоминающие регистры и схемы управления портами ввода-вывода и системной шиной.

Основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой, является системная шина (магистраль), в состав которой входят следующие компоненты:

  • шина данных для параллельной передачи всех разрядов машинного слова данных;
  • шина адреса из проводов и схем сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства;
  • шина управления для передачи управляющих сигналов во все блоки компьютера.

Системная шина обеспечивает три направления передачи информации:

  • между микропроцессором и основной памятью;
  • микропроцессором и портами ввода-вывода внешних устройств;
  • основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти).

Все блоки компьютера (их порты ввода-вывода) через соответствующие унифицированные разъемы (стыки) подключаются к шине непосредственно или через контроллеры (адаптеры). Управление системной шиной осуществляется, как правило, контроллером шины , формирующим основные сигналы управления. Обмен информацией между внешними устройствами и системной шиной выполняется с использованием ASCII-кодов.

Основная память компьютера предназначена для хранения и оперативного обмена информацией между блоками компьютера. Содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ):

  • ПЗУ хранит неизменяемую (постоянную) программную информацию и позволяет только считывать хранящуюся в нем информацию. Здесь хранятся программы тестирования оборудования ПК, обслуживания ввода/вывода, некоторые данные и др. При выключении электропитания компьютера содержимое постоянной памяти сохраняется;
  • ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в процессе работы ПК. Главное достоинство оперативной памяти – ее высокое быстродействие и возможность прямого обращения к каждой адресуемой группе из восьми ячеек памяти отдельно (прямой адресный доступ к ячейке). Память называется оперативной потому, что работает так быстро, что процессору почти не приходится ждать при чтении данных из памяти и записи в нее. При выключении питания ПК вся информация ОЗУ стирается. Объем установленной в компьютере оперативной памяти определяет, с каким программным обеспечением можно на нем работать. При недостаточном объеме оперативной памяти многие программы либо не работают, либо работают медленно.

Внешняя память ПК относится к внешним устройствам и используется для долговременного хранения информации. Устанавливаемое и все прикладное программное обеспечение компьютера хранится во внешней памяти. К внешней памяти компьютера относятся разнообразные запоминающие устройства, но основными являются накопители на жестких магнитных дисках (НЖМД). Назначение этих дисков – хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. В качестве устройств внешней памяти используются также запоминающие устройства на кассетной магнитной ленте (стримеры), накопители на оптических дисках, флеш-карты и др.

Генератор тактовых импульсов (ГТИ) генерирует последовательность электрических импульсов. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы компьютера. Частота ГТИ – одна из основных характеристик персонального компьютера и во многом определяет скорость его работы, так как каждая операция в машине выполняется за определенное количество тактов.

Источник питания (ИП) компьютера представляет собой блок, содержащий системы энергопитания узлов ПК.

К внешним устройствам персонального компьютера кроме внешней памяти относятся разнообразные устройства ввода/вывода информации, и основными здесь являются видеомонитор, клавиатура, мышь.

Персональный компьютер является устройством автоматизации информационных процессов и используется для накопления, обработки и передачи информации.

Компьютер - это многофункциональное электронное устройство, предназначенное для накопления, обработки и передачи информации. Под архитектурой персонального компьютера понимается его логическая организация, структура и ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени.

В основу построения большинства компьютеров положены принципы, сформулированные Джоном фон Нейманом.

Принцип программного управления - программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

Принцип однородности памяти - программы и иные хранятся в одной и той же памяти; над командами можно выполнять те же действия, что и над данными!

Принцип адресности - основная память структурно состоит из пронумерованных ячеек.

Компьютеры, построенные на этих принципах, имеют классическую архитектуру.

Архитектура компьютера определяет принцип действия, информационные связи и взаимное соединение основных логических узлов компьютера, к которым относятся:

· центральный процессор;

· основная память;

· внешняя память;

· периферийные устройства.

Конструктивно персональные компьютеры выполнены в виде центрального системного блока, к которому через специальные разъемы присоединяются другие устройства. В состав системного блока входят все основные узлы компьютера:

· системная плата;

· блок питания;

· накопитель на жестком магнитном диске;

· накопитель на гибком магнитном диске;

· накопитель на оптическом диске;

· разъемы для дополнительных устройств.

· На системной (материнской) плате в свою очередь размещаются:

· микропроцессор;

· математический сопроцессор;

· генератор тактовых импульсов;

· микросхемы памяти;

· контроллеры внешних устройств;

· звуковая и видеокарты;

· таймер.

Архитектура современных персональных компьютеров основана на магистрально-модульном принципе. Модульный принцип позволяет пользователю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация системы опирается на магистральный принцип обмена информацией. Все контроллеры устройств взаимодействуют с микропроцессором и оперативной памятью через системную магистраль передачи данных, называемую системной шиной. Системная шина выполняется в виде печатного мостика на материнской плате.

Микропроцессор - это центральный блок персонального компьютера, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией.


Системная шина является основной интерфейсной системой компьютера, обеспечивающей сопряжение и связь всех его устройств между собой. Системная шина обеспечивает три направления передачи информации:

· между микропроцессором и основной памятью;

· между микропроцессором и портами ввода-вывода внешних устройств;

· между основной памятью и портами ввода-вывода внешних устройств.

Порты ввода-вывода всех устройств через соответствующие разъемы (слоты) подключаются к шине либо непосредственно, либо через специальные контроллеры (адаптеры).

Основная память предназначена для хранения и оперативного обмена информацией с прочими блоками компьютера.

Внешняя память используется для долговременного хранения информации, которая может быть в дальнейшем использована для решения задач. Генератор тактовых импульсов генерирует последовательность электрических символов, частота которых задает тактовую частоту компьютера. Промежуток времени между соседними импульсами определяет такт работы машины.

Источник питания - это блок, содержащий системы автономного и сетевого питания компьютера.

Таймер - это внутримашинные электронные часы, обеспечивающие автоматический съем текущего момента времени. Таймер подключается к автономному источнику питания и при отключении компьютера от сети продолжает работать.

Внешние устройства компьютера обеспечивают взаимодействие машины с окружающей средой: пользователями, объектами управления и другими компьютерами.

Основными функциональными характеристиками персонального компьютера являются:

· производительность, быстродействие, тактовая частота. Производительность современных ЭВМ измеряют обычно в миллионах операций в секунду;

· разрядность микропроцессора и кодовых шин интерфейса. Разрядность - это максимальное количество разрядов двоичного числа, над которым одновременно может выполняться машинная операция, в том числе и операция передачи информации; чем больше разрядность, тем, при прочих равных условиях, будет больше и производительность ПК;

· типы системного и локальных интерфейсов. Разные типы интерфейсов обеспечивают разные скорости передачи информации между узлами машины, позволяют подключать разное количество внешних устройств и различные их виды;

· емкость оперативной памяти. Емкость оперативной памяти измеряется обычно в Мбайтах. Многие современные прикладные программы с оперативной памятью, имеющей емкость меньше 16 Мбайт, просто не работают либо работают, но очень медленно;

· емкость накопителя на жестких магнитных дисках (винчестера). Емкость винчестера измеряется обычно в Гбайтах;

· тип и емкость накопителей на гибких магнитных дисках. Сейчас применяются накопители на гибких магнитных дисках, использующие дискеты диаметром 3,5 дюйма, имеющие стандартную емкость 1,44 Мб;

· наличие, виды и емкость кэш-памяти. Кэш-память - это буферная, недоступная для пользователя быстродействующая память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в более медленно действующих запоминающих устройствах. Наличие кэш-памяти емкостью 256 Кбайт увеличивает производительность персонального компьютера примерно на 20%;

· тип видеомонитора и видеоадаптера;

· наличие и тип принтера;

· наличие и тип накопителя на компакт дисках CD-ROM;

· наличие и тип модема;

· наличие и виды мультимедийных аудиовидео-средств;

· имеющееся программное обеспечение и вид операционной системы;

· аппаратная и программная совместимость с другими типами ЭВМ. Аппаратная и программная совместимость с другими типами ЭВМ означает возможность использования на компьютере, соответственно, тех же технических элементов и программного обеспечения, что и на других типах машин;

· возможность работы в вычислительной сети;

· возможность работы в многозадачном режиме. Многозадачный режим позволяет выполнять вычисления одновременно по нескольким программам (многопрограммный режим) или для нескольких пользователей (многопользовательский режим);

· надежность. Надежность - это способность системы выполнять полностью и правильно все заданные ей функции;

· стоимость;

· габаритами вес.